Clinical Performance.

Leveraging 20 years of science.

New Generation of Flow Diverter (SurpassTM) for Unruptured Intracranial Aneurysms A Prospective Single-Center Study in 37 Patients

Description	Highlights		
Patient population	37		
Total aneurysms	49 unruptured aneurysms		
Location	 n=32 ICA n=8 MCA n=4 ACA n=5 posterior n=14 at bifurcations 0.8 Surpass Flow Diverters per aneurysm 36 patients used only one Surpass 100% 100% 3% 0% 		
Number of Surpass used			
Successful navigation			
Successfully deployed			
Mortality			
Morbidity			
Vasospasm			
Migration	0%		
Complete occlusion at 6 months	94% (29/31 aneurysms with complete neck coverage after implantation)		
Side branch occlusions	n=0 (0% symptomatic, 10.7% asymptomatic)		

Source: Stroke June 2013, Vol. 44, no. 610, 1567-1577

High Mesh Density Supporting Studies

- An Original Flow Diversion Device for the treatment of Intracranial Aneurysm. Chander Sadasivan, PhD; Ajay Wakhloo, MD; Baruch B. Lieber, PhD (Stroke. 2009;40:962-968)
- Endoluminal Scaffolds for Vascular Reconstruction and Exclusion of aneurysms from Cerebral Circulation. Baruch B. Lieber, PhD; Chander Sadasivan, PhD (Stroke. 2010;41:521-525)

Complete Aneurysm Therapy Solution

TransForm[™] OCCLUSION BALLOON CATHETER

Synchro GUIDEWIRES

Target[™] DETACHABLE COILS

Selection Guide

Flow Diverter Specifications	2*	3	4	5	
Maximum vessel diameter	2.5mm	3.5mm	4.4mm	5.3mm	
Recommended minimum	2.0mm	2.5mm	3.4mm	4.3mm	
Number of total wires	48	72	72	96	
Wire diameter	25μm 32μm				
Number of marker wires		12			
Braided wire material	Cobalt chromium alloy				
Marker wire material		92% platinum 8% tungsten			
Mesh density (pores/mm²)		20-32			
Delivery System	2	3	4	5	
Outer Diameter, proximal/distal	3.7F/3.3F (1.2mm/1.1mm)				
Minimum recommended microcatheter ID		0.057in (1.447mm)			
Working length	150cm 135cm				

*Note that the 2mm size is not available on the Surpass Streamline delivery system.

Product Sizes and Catalog Numbers

		Diameter (mm)					
		2*	3	4	5		
Length (mm)	12	502FPP					
	15	503FPP	100FPP	115FPP			
	20	504FPP	101FPP	110FPP	124FPP		
	25		102FPP	111FPP	120FPP		
	30			112FPP	121FPP		
	40			113FPP	122FPP		
	50			114FPP	123FPP		

*Note that the 2mm size is not available on the Surpass Streamline delivery system.

Surpass[™] Flow Diverter

See package insert for complete indications, contraindications, warnings and instructions for use INTENDED USE/INDICATIONS FOR USE

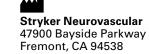
The Surpass Flow Diverter is indicated for use for the treatment of saccular or fusiform intracranial aneurysms arising from a parent vessel with a diameter of ≥ 2 mm and ≤5.3 mm.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Surpass, Streamline, Synchro, Target, TransForm, XT-27. All other trademarks are trademarks of their respective owners or holders

Copyright © 2014 Stryker NV00010289.AA

Longer sizes, as compared to competitive products, may reduce the number of devices needed per aneurysm

THIS DOCUMENT IS INTENDED SOLELY FOR THE USE OF HEALTHCARE PROFESSIONALS.

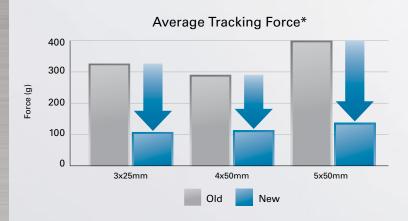

A physician must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that physicians be trained in the use of any particular product before using it in a procedure. The information presented is intended to demonstrate the breadth of Stryker product offerings. A physician must always

refer to the package insert, product label and/or instructions for use before using any Stryker product. Products may not be available in all markets because product availability is subject to the regulatory and/or medical practices in individual markets. Please contact your Stryker representative if you have questions about the availability of Stryker products in your area. The Stryker products listed above are CE marked according to the Medical Device Directive 93/42/EEC.

RAQA Manager Stryker France S.A.S. ZAĆ-Avenue de Satolas Green 69330 Pusignan France

stryker.com/neurovascular stryker.com/emea/neurovascular Date of Release: AUG/2014

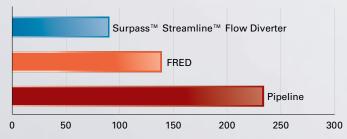
EX_EN_IL



Surpass[™] Streamline[™] FLOW DIVERTER

Streamlined Delivery. Simplified Deployment. Superior Diversion.

Streamlined Delivery. Simplified Deployment.

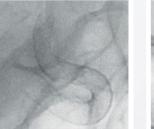

67% Less Tracking Force than Legacy Surpass

Improved Flexibility
 Nitinol-reinforced outer catheter

 \mathbf{b}

Enhanced Proximal Stability
 Thicker hypotube for increased column strength

Average Tracking Force (competitive comparison)⁺

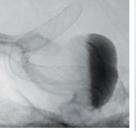


34% Less Tracking Force

0/0 Less Tracking Force than Pipeline

Optimized for Opening

- More wires for a stable braid
- Cobalt Chromium for a strong braid
- More radial force
- Continuous opening with no kinking or twisting



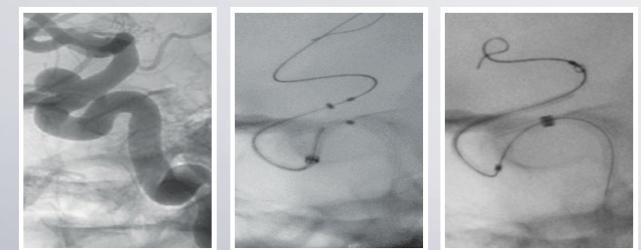
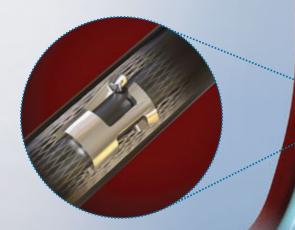

Image courtesy of Peter Kan, MD — used with permission

Image courtesy of Peter Kan, MD – used with permission

Long Lengths

- Up to 50mm
- Minimize the need for multiple devices

Access Even the Most Tortuous Anatomy


Images courtesy of Alex Coon, MD – used with permission

- Enhanced atraumatic access to distal vasculature using an intermediate catheter
- Better fit for better climbing performance

Bench test results may not necessarily be indicative of clinical performance. Competitive comparison evaluated Surpass through 0.057in ID guide catheter and competitive technologies through XT-27™ Catheter. *Compared to Legacy Surpass™ Flow Diverter. †Bench testing included Surpass Streamline Flow Diverter 4x20mm (n=5), PED 4x20mm (n=3) and FRED 4x23mm (n=2). Testing completed by Stryker Neurovascular. Data on file and available upon request.

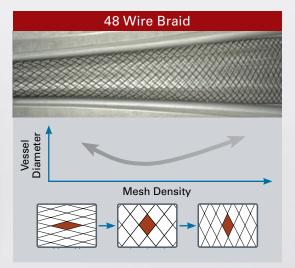
Recapture and Redeploy

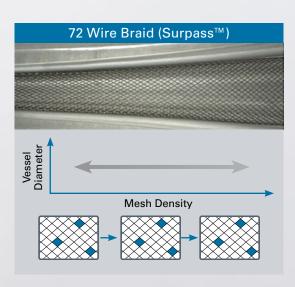
• Engineered to be repositioned up to **3x**

Superior Diversion.

Control Guidewire Tip ----During Deployment

- Maintain guidewire access
- Facilitates recrossing


High Mesh Density = Consistent Occlusion


- More wires = Higher Mesh Density
- Maintaining high mesh density may lead to faster aneurysm occlusion
- Consistent flow diversion across vessels that taper

Accurate Placement

Never shorter than its labeled length after deployment



Why is Mesh Density Important?

Increasing wires from 48 to 72
 - Reduces aneurysm inflow rate by 24%
 - Shrinks the impact zone by almost 90%

Results from case studies are not predictive of results in other cases. Results in other cases may vary.

All photographs taken by and on file at Stryker Neurovascular. Bench test results may not necessarily be indicative of clinical performance. Testing completed by Stryker Neurovascular. Data on file and available upon request.

